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Abstract

In structural dynamics, different damping models are used; however, due to

modal decomposition, those models typically result in the use of the damping

ratio as the modal damping parameter. If proportional viscous damping is

used, the damping ratio can be related to the mass and stiffness parameters of

a particular dynamic system, i.e. the damping is structure-specific.

Lord Rayleigh introduced the idea of proportional damping based on the

kinetic and potential energy of a dynamic system. If one imagines a particular

deflection shape, then most of the kinetic energy is at the locations with high

amplitudes of vibration and none at the nodes. As the potential energy is

related to the strain, for a particular deflection shape, the displacement and

strain deflection shapes do not correspond, and neither does the location of the

kinetic and potential energy proportionality. The proportional damping is valid

for the spatially-cumulative kinetic and potential energy, but questionable for a

particular mode shape at a particular location.

Based on the Euler-Bernoulli beam theory, this research proposes an exten-
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sion to the proportional damping approach, which results in a material-specific

damping parameter. It is shown that using this material damping parameter

and the assumption of damping energy proportionality to the local modal strain

energy, the modal damping ratio of each mode can be obtained theoretically.

This finding was confirmed against several experimental test-cases.

The proposed material-specific damping parameter opens up the possibil-

ity to obtain the structure-specific damping parameters using the theoreti-

cal/numerical mode shapes.

Keywords: damping ratio, bending vibrations, material property, strain

1. Introduction

In vibrating systems, damping is the physical phenomenon responsible for

the dissipation of energy. To obtain a system of uncoupled differential equations,

the damping models typically used, do not correspond to physically observed

phenomena [1, 2, 3, 4].5

One of the first descriptions of damping was given by Lord Rayleigh [5], who

discussed that due to internal damping, the mechanical energy in vacuo would

finally be dissipated as heat. In the case of an open space, the interaction with

the surrounding air would result in mathematical difficulties. Therefore, accel-

eration (mass) and velocity (stiffness) proportionality was introduced [5, 6]. It10

follows that the dissipated energy can be assumed to be proportional to the

kinetic and the potential energy, making it possible to uncouple the equations

of motion in the generalised coordinates, see, e.g., Caughey et al. [7] or Adhikari

[8]. Proportional viscous damping is usually described with α and β parame-

ters, which are used with a particular natural frequency to define the damping15

ratio of a particular mode shape [9, 10]. The proportional viscous damping

model is widely used and requires fitting the proportional viscous damping co-

efficients α and β to the experimental data of a particular structure. Such a

description of damping is structure-specific and cannot be generalised to other

structures [11, 12, 13]. When proportional viscous damping is applied to ho-20
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mogeneous structures, the mass proportional viscous damping coefficient α is

usually neglected, see, e.g., [11]. In fact, in most of the experimental campaigns,

the damping ratios are linearly increasing with the frequency [14, 15, 16] and

can be modelled using the stiffness viscous damping coefficient β, only.

Besides proportional viscous damping, hysteretic proportional damping was25

also researched [17, 18]. The strain-rate coefficient can be related to the com-

plex Young’s modulus using the loss factor [19]. The loss factor results, like the

damping ratio, in a structure-specific damping estimation. A similar conclusion

can be made for other methods based on the complex modulus model meth-

ods [20], e.g., Golla-Hughes-McTavish [21], the elastic displacement fields [22],30

fractional derivatives [23], standard linear solid or Zener model [24].

If the above research was focused on relating damping to structural dynamics

theory, then an equally important question is, what is the underlying physics of

energy dissipation? Is it velocity, displacement, strain amplitude proportional?

Maxwell, Boltzmann, Voigt and Kelvin researched in the nineteenth century35

the viscoelasticity and dissipative behaviour of solid metallic material. Bert

[25] gave a comprehensive review of the material damping model for structural

dynamics. Banks and Inman [26] compared the most used models for contin-

uous beam systems, such as Kelvin-Voigt (or strain-rate) [27] and spatial hys-

teresis [28]; which are both frequency-dependent models. The energy dissipated40

by vibrating beams was related to the local rate of change of strains (Kelvin-

Voigt) or beam-section rotations (spatial hysteresis), considered responsible for

the internal friction in the material. The combination of the strain-rate damp-

ing model and fluid (commonly air) damping modifies the Rayleigh’s damping

ratio expression by introducing fluid-viscous-damping and strain-rate-damping45

proportionality. Kimball and Lovell [29] showed experimentally, in 1927, a cor-

relation of the internal friction damping with the strain amplitude. In the 1950s,

Lazan concluded that damping is proportional to the square of the strain am-

plitude [30].

Recently, Iglesias et al. [31] presented a method for the estimation of mass50

proportionality viscous damping coefficients from the free response of systems,
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using a reduced-interface distribution analysis; Yılmaz et al. [32] predicted the

viscous damping coefficients using a machine-learning-based method. Sarbinowski

et al. [33] identified the Rayleigh viscous damping using a vision-based method.

Hamdaoui et al. [34] identified the viscoelastic damping properties of a material55

using the adjoint method. Mei et al. [35] proposed a modified proportional vis-

cous damping approach considering exponential damping, and Nghiem et al. [36]

proposed a new 1-D damping model. Heitz et al. [37] proposed an equivalent

evolving viscous damping ratio to model nonlinear damped structures. The

damping properties of recent 3D printed material were investigated by Ficzere60

et al. [38].

It is commonly accepted that damping has to be derived from experimental

data, fitting equivalent damping models, such as Rayleigh viscous damping or

other physical damping models. However, material friction damping is related

to the ability of the material to locally dissipate energy due to micro-slides dur-65

ing vibrations, i.e. to the local strain amplitude. The relation between the

distribution of dissipation and strain field amplitude was theoretically and ex-

perimentally researched by Mihalec et al. [39], monitoring the surface tempera-

ture. Higher temperature increments correspond to higher strains; while energy

is not locally dissipated at the node of the strain deformation. As Kranjc et70

al. [40] showed, the displacement mode shapes and the strain mode shapes do

not correspond; due to this the location where the modal displacement/velocity

is zero, does not correspond to the locations where the strain is zero. For an

ideal system without damping the mechanical energy is conserved, but since

the strain and displacement mode shapes do not correspond, this conservation75

is not valid at a particular location.

In this research, the dissipation property of the material is modelled with a

time and spatially independent material property applied to the strain field of

the system to obtain the modal damping ratio. The dissipation distribution is

directly related to the strain field, and the energy dissipated from each mode is80

the integral contribution of the local dissipation. This research focuses on the

Euler-Bernoulli beam theory, which enables a relatively clear analytical and ex-

4



perimental observation of the damping mechanism. The analytical background

of the proposed approach is presented in Sec. 2. The concept of strain pro-

portional damping is presented in Sec. 3 and developed for the beam case in85

Sec. 4. The experimental research and validation is then presented in Sec. 5.

Finally, Sec. 6 drains the conclusion and future perspectives resulting from the

considerations of this research.

2. Theoretical background

In a damping-free vibrating structure the mechanical energy is conserved and90

alternates between the maximum kinetic and the maximum potential energy,

which are respectively defined as [41]:

Ek (t) =
1

2

∫
V

ρ u̇ (t)
T
u̇ (t) dV, Ep (t) =

∫
V

σ (t)
T
ε (t) dV. (1)

where ρ is the material density, u̇ is the local velocity vector, σ and ε are the

local stress and strain vectors, respectively.

The potential Ep (t) can be written as the sum of the potential energy related95

to each of the rth mode shapes, using modal expansion or modal decomposition

theorems [42, 43] :

Ep (t) =

inf∑
r=1

Erp (t) . (2)

Since the modal participation factors of high-frequency modes are usually neg-

ligible [44], only a limited number of modes is usually sufficient to represent

almost the entire potential energy of the system. A similar conclusion could be100

made for the kinetic energy.

The dissipation properties of the system are usually introduced in the modal

model to include dissipation effects, such as the damping ratio ζr or the loss

factor ηr. One way of defining the damping ratio/loss factor in relation to the

energy dissipated in a steady-state oscillating cycle with respect to the total105

energy or to the maximum of the potential energy Êrp of the rth mode shape:

[45].

ζr =
ηr
2

=
W r
d

2πÊrp
(3)
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where W r
d is the energy lost by the rth mode shape in an oscillation cycle.

The other way (for proportional viscous damping) is to define the modal

damping ratio ζr as [8]:110

ζr =
ηr
2

=
1

2

(
α

ωr
+ β ωr

)
(4)

where α and β are, for a particular mechanical system, identified from an ex-

periment.

A similar consideration could be given for other damping models.

3. Strain proportional damping

Eqs. (3) and (4) show that the damping ratio can be defined very differently115

and still be successfully used in numerical models as long as it is experimentally

identified for a particular structure.

However, it is reasonable to expect that the internal material friction should

be related to the microstructural properties of the material and the strain-stress

field induced by the vibrating structure. This research introduces a new material120

property, denoted µ, which will be used to quantify the strain proportional

damping. The mass matrix M is defined by the geometry and the material

density ρ; the stiffness matrix K is defined by the geometry and modulus of

elasticity E. Similarly, the description of damping should be defined with the

geometry and the strain proportional damping parameter µ.125

Dissipation is related to the micro-movements of the material under the

strain field, and therefore to the strain energy. For a damping-free continuous

system, the potential energy coincides with the strain energy of the system,

i.e., the energy stored in the system due to deformations (3). Strain energy is,

therefore, a good indicator to quantify and localise the dissipation of energy.130

For a linear, time-invariant system, the excitation at the r-th natural fre-

quency ωn,r results in the deflection with the r-th mode shape φr. This implies

that the energy is lost only where the strain is not zero, as experimentally proved

in [39].
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In this research it is assumed that the dissipation of the internal energy (i.e.,135

the damping energy) is proportional to the strain energy; based on the above

discussion the following assumption about the damping ratio is made:

ζr = µ

√∫
V

ε2 dV (5)

where µ is the newly introduced, strain proportional material damping param-

eter. It is reasonable to expect that the proposed parameter µ can be assumed

to be frequency independent [29, 46]. In Eq. (5) the square ε2 is introduced140

in the analogy with the strain energy (which also accounts for the positive and

negative strain ε). Due to the square root in Eq. (5) the damping ratio becomes

strain-amplitude proportional.

4. Strain proportional damping in Euler-Bernoulli beam theory

The definition of the strain proportional damping ratio (5) is here applied145

to the free-free beam theory and the modal strain shapes of such a beam.

According to Euler-Bernoulli theory, the bending behaviour of a beam gen-

erates a strain field εxx (x, z) [41]:

ε = εxx(x, z) = −∂
2w(x)

∂x2
z (6)

where w(x) is the displacement of the beam due to the bending force and z is

the distance from the middle plane, see Fig. 1.150

Since interest is focused on the modal damping ratio ζr, the resonance con-

ditions are studied. For bending around the y direction, the displacement of

the r-th natural frequency is described using the r-th mass-normalised mode

shape φr scaled with the constant scaling factor gyy required to get the physical

beam displacement in the z direction:155

wr(x) = gyy φr(x). (7)

Inserting (7) into (6):

εxx(x, z) = −∂
2(gyy φr(x))

∂x2
z (8)
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Figure 1: Beam schematic

where ∂2φr/∂x
2 represents the r-th curvature mode shape [47].

Inserting Eq. (8) into Eq. (5) the rth damping ratio ζr,y for the bending

vibrations around the y axis is:

ζr,y = µ

√∫
V

g2yy

(
∂2φr(x)

∂x2
z

)2

dV (9)

The curvature mode shape depends on the x coordinate only, and therefore the160

volume integral in Eq. (9) is simplified to a line integral along x:

ζr,y = µ

√
Iyy g2yy

∫ l

0

(
∂2φr(x)

∂x2

)2

dx (10)

where Iyy is the second moment of area A:

Iyy =

∫
A

z2 dA (11)

and l is the beam length.

Eq. (10) can be related to the r-th modal strain energy (MSE) πr,y [41]:

πr,y =
1

2
E Iyy

∫ l

0

(
∂2φr(x)

∂x2

)2

dx (12)

With Eq. (10) the damping ratio (10) is:165

ζr,y = µ

√
2

E
g2yy πr,y. (13)

MSE πr,y is relatively easy to obtain using analytical or finite-element tools.

With the help of Eq. (13) the damping ratio ζr,y can be predicted, given the
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strain proportional damping parameter µ and the correct scaling coefficient gyy.

As will be shown in the following, the scaling coefficient is geometry dependent

and can be, for a simple geometry, theoretically defined.170

Relation between µ and β. The MSE πr defined in (12), apart from a multipli-

cation factor, also represents the r-th modal stiffness kr [41]:

kr,y = E Iyy

∫ l

0

(
∂2φr(x)

∂x2

)2

dx πr,y =
kr,y
2

(14)

Since the mode shape φr is mass normalised, the modal stiffness kr,y results:

kr,y = ω2
r,y (15)

where ωr,y is the r-th natural frequency of bending around the y direction.

Substituting Eqs. (15) and (14) into Eq. (13) the damping ratio ζr,y can be175

written as:

ζr,y =
µ√
E
gyy ωnr,y. (16)

Comparing Eq. (16) and the viscous damping definition (4), with α = 0, we

obtain:

β = 2
µ√
E
gyy (17)

Eq. (17) defines the relation between the stiffness viscous damping coefficient β,

the material dissipation property µ and the beam geometry, which will be shown180

to be related to gyy.

4.1. Geometry normalisation

For linear systems, it is reasonable to expect that the scaling coefficient gyy

in Eq. (13) would not change the damping ratio. Further, the same strain

proportional damping parameter µ should properly describe the damping ratio185

in the case of changes in the geometry (i.e., cross-section or length). Due to

this, the scaling coefficient gyy (13) will be shown to account for the geometry

normalisation.
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Cross-section influence. The scaling coefficient will first be discussed for the

case of a Euler-Bernoulli beam oscillating in bending around the y and z direc-190

tions. The constant cross-sections geometry is defined with the second moments

of area Iyy and Izz, see Fig 1.

If the bending vibrations around the y and z direction are researched uncou-

pled, then the r-th mode shape φr defines the displacement mode shapes wr(x)

and vr(x), respectively:195

wr(x) = gyy φr(x), vr(x) = gzz φr(x). (18)

The displacements wr(x) and vr(x) are represented by the same mass-normalised

mode shape φr(x), just scaled differently. The displacements wr(x) and vr(x)

can also be obtained with a proper static external force fr(x). In general, the

forces for the y and z directions differ; however, due to the fact that for a con-

stant cross-section, the external force is proportional to the second derivative of200

the strain εxx (8), see [41]:

fr(x) ∝ ∂4ϕr(x)

∂x4
, (19)

the static force fr(x) for the displacements wr(x) and v(x) are proportional, i.e.,

they differ by an unknown scaling factor. In Eq. (19) ϕr(x) is the mode shape

normalised to the unitary maximum displacement in contrast to φ(x) which is

mass normalised and therefore depends on the beam geometry.205

If the same external force fr(x) is separately applied to the two beam direc-

tions y and z, the external work applied on the beam is statically converted to

the potential energy1; for the y direction bending:∫ l

0

fr(x)wr(x) dx =
1

2
E Iyy

∫ l

0

(
∂2wr(x)

∂x2

)2

dx (20)

and the z direction bending:∫ l

0

fr(x) vr(x) dx =
1

2
E Izz

∫ l

0

(
∂2vr(x)

∂x2

)2

dx. (21)

1Potential energy equals to the strain energy π (not to be confused with the modal strain

energy πr (12).
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Using the definitions of the displacements wr(x) and vr(x) (18):210 ∫ l

0

fr(x) gyy φr(x) dx =
1

2
E Iyy

∫ l

0

(
∂2(gyy φr(x))

∂x2

)2

dx (22)

∫ l

0

fr(x) gzz φr(x) dx =
1

2
E Izz

∫ l

0

(
∂2(gzz φr(x))

∂x2

)2

dx (23)

where gyy and gzz are the two unknown scaling constants necessary to scale

the mass-normalised mode shape φr(x) to the physical displacements w(x) and

v(x), respectively.

If the constants gyy and gzz are extracted from the integrals in Eqs. (22) and215

(23), the following equations are obtained:

A = gyy Iyy B A = gzz Izz B, (24)

where:

A =

∫ l

0

fr(x)φr(x) dx B =
1

2
E

∫ l

0

(
∂2φr(x)

∂x2

)2

dx. (25)

From Eq. (24) it follows:
gzz
gyy

=
Iyy
Izz

. (26)

Eq. (26) defines the ratio between the scaling coefficients; however, the absolute

value is arbitrary. To have the scaling coefficients exactly defined, this research220

additionally imposes:

gzz gyy = 1. (27)

Length influence. Two beams of length l1 and l2 with constant second moment

of area Iyy are researched for bending around the y direction. The beams are

loaded with the external forces f1,r(x) and f2,r(x). The loads f1,r(x) and f2,r(x)

are proportional to the unitary maximum displacement normalised mode shape225

(19), thus with same amplitude and qualitatively with the same shape, squeesed

to different lengths.

If the static external forces f1,r(x) and f2,r(x) are applied to the two beams

in the z directions, the external work applied on the beam is converted to the
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potential energy:230 ∫ l1

0

f1,r(x)w1,r(x) dx =
1

2
E Iyy

∫ l1

0

(
∂2w1,r (x)

∂x2

)2

dx (28)

∫ l2

0

f2,r(x)w2,r(x) dx =
1

2
E Iyy

∫ l2

0

(
∂2w2,r(x)

∂x2

)2

dx (29)

Using the definitions of the displacements wr(x) and vr(x) (18):∫ l1

0

f1,r(x) gyy,1 φ1,r(x) dx =
1

2
E Iyy

∫ l1

0

(
∂2(gyy,1 φ1,r(x))

∂x2

)2

dx (30)

∫ l2

0

f2,r(x) gyy,2 φ2,r(x) dx =
1

2
E Iyy

∫ l2

0

(
∂2(gyy,2 φ2,r(x))

∂x2

)2

dx (31)

To generalise Eq.s (30) and (31) a normalised length coordinate χ is introduced:

235

χ =
x

l
, χ ∈ [0, 1]. (32)

With the normalised variable χ, the mass normalised mode shape and the ap-

plied force are defined as (for details, see Eqs. (A.4) and (A.6) in Appendix

A):

ψr(χ) =
√
l φr(x), fr (χ) ∝ l4 fr(x). (33)

Introducing ψr(χ) and fr (χ) to Eqs. (30) and (31):

∫ 1

0

fr(χ)

l41
gyy,1

ψr(χ)√
l1

l1dχ =
1

2
E Iyy g

2
yy,1

∫ 1

0

 1

l21

∂2
(
ψr(χ)√
l1

)
∂χ2

2

l1 dχ (34)

240

∫ 1

0

fr(χ)

l42
gyy,1

ψr(χ)√
l2

l2 dχ =
1

2
E Iyy g

2
yy,2

∫ 1

0

 1

l22

∂2
(
ψr(χ)√
l2

)
∂χ2

2

l2 dχ (35)

Eqs. (34) and (35) can be written in compact form as:

C =
gyy,1√
l1
D C =

gyy,2√
l2
D, (36)

where:

C =

∫ 1

0

fr(χ)ψr(χ) dx D =
1

2
E Iyy

∫ 1

0

(
∂2ψr(χ)

∂x2

)2

dx. (37)
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From Eq. (36) it follows:
gyy,1√
l1

=
gyy,2√
l2

(38)

which defines the relation between the scaling factor gyy and the beam length l.

Based on Eqs. (26) and (27), the generalised, length l dependent, scaling245

factors gyy and gzz are:

gyy (l) =

√
Izz
l Iyy

gzz (l) =

√
Iyy
l Izz

(39)

4.2. Generalised strain proportional damping ratio

The relation between the strain related to the r-th mode shape and its

damping ratio ζr in Eq. (13) can be generalised using the definition of the

scaling coefficients gyy and gzz (39):250

ζr,y = µ

√
2

E

Iyy
l Izz

πr,y ζr,z = µ

√
2

E

Izz
l Iyy

πr,z (40)

where µ is the material property describing the dissipation ability, E is the mod-

ulus of elasticity, πr,y and πr,z are the MSE (normalised to unitary modal mass)

of the r-th mode shape for bending around the y and z direction, respectively.

Iyy and Izz are the second moment of area.

Eq. (40) is based on the unitary modal mass-normalised mode shapes φr;255

however, if the MSE Πr is computed using a mode shape Ψr normalised to a an

arbitrary modal mass m̃r 6= 1, then the damping ratio is [48]:

ζr,y = µ

√
2

E

Iyy
l Izz

Πr,y

m̃r,y
ζr,z = µ

√
2

E

Izz
l Iyy

Πr,z

m̃r,z
(41)

where, as expected, the material property µ does not change with the mode-

shape normalisation.

5. Experimental research260

The strain proportional damping ratio, as proposed for a constant cross-

section beam in Eq. (40), will here be used on real structures and compared to

established damping models.
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Nine beams are studied, with different cross-sections, lengths, materials and

mode shapes. The geometrical and material properties of the studied beams are265

reported in Tab. 1.

Table 1: Geometry and material of the beam specimens

Specimen 2 b [mm] 2h [mm] t [mm] l [mm] Material

1 40 15 - 1000 aluminium

2 30 15 - 1000 aluminium

3 20 10 - 1000 aluminium

4 20 10 - 600 aluminium

5 20 10 - 398 aluminium

6 30 20 2 600 Laminated steel

7 40 20 2 600 Laminated steel-magnesium

8 30 20 - 500 Stainless steel

9 30 20 - 500 Stainless steel (with notch)

5.1. Experimental setup

The beams are tested in the free-free condition so that the damping due to

constraints is minimised and dissipation is only due to the material’s internal

friction. The specimens are hung with long ropes in the direction orthogonal to270

the beam bending modes, as shown in Fig. 2. The hanging points are at 10% and

90% of the beam length l. The beams are excited with a PCB 086E80 miniature

instrumented hammer at three locations: 20%, 50% and 70% of the beam length

l. The response is measured with a Polytec PDV 100 vibrometer at 70% of the

beam length l. Velocities and force are acquired using a NI CompactDaq and275

NI-9234 analog acquisition module for 1 second with a sampling frequency of

51200 Hz.

The damping ratios were identified using Least Square Complex Frequency

(LSCF) domain [49] and logarithmic decrement [50] methods. The results of

the two damping-identification methods do not show significant deviations, and280

all the following results are obtained using the LSCF method. A force window
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Figure 2: Experimental setup

is applied to the excitation data and the exponential window to the responses.

Damping ratios are identified for the bending modes in the first 6 kHz. The

identified damping ratios are compensated for the exponential window effect

[51]. Table 2 lists the number of bending modes identified in the first 6 kHz; in285

total 127 different mode shapes were considered resulting in 127 experimentally

identified damping ratios.

The experimentally identified damping ratios ζexpr represent the effects of

both the internal friction and the air damping [52]. The air damping can be

analytically evaluated for the free-free beam [53] using Blevins’ equation for290

fluid damping [54]:

ζair =
1

2

ρair b
2

m/l

V

ωr b
CD (42)

where ρair is the air density, b is the width of the face in the plane of vibration,

V is the velocity and CD is the drag coefficient (CD = 2.08 was used for the

15



Table 2: Experimentally identified bending modes

Specimen y bending z bending

1 12 8

2 12 9

3 15 11

4 9 6

5 6 4

6 6 4

7 5 3

8 6 4

9 7 -

tested beam’s geometry). With Eq. (42) the air-damping is estimated to be

orders of magnitude smaller than the identified damping in all the analysed295

cases, and therefore the air damping is neglected.

5.2. Change in geometry

Aluminium beams. Five aluminium beams from the same batch, but with differ-

ent geometries, #1, #2, #3, #4 and #5, are experimentally tested, see Tab. 1

and Fig. 3. According to the theoretical model (5), the material damping param-300

eter µ is expected to be a constant. The bending vibrations are experimentally

investigated in both the y and z directions.

Figure 3: Aluminium beam specimens

Specimens #1, #2 and #3 have the same length l = 1 m; therefore, only
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the cross-section effects the scaling factor g (26). Specimens #4 and #5 have a

different length l and are used to validate the length’s influence on the scaling305

factor g (39).

The stain proportional damping model (40) is used here to identify the

material damping parameter µ from the experimentally measured damping ratio

ζexpr and the MSE πr. MSE (12) is obtained here analytically from Euler-

Bernoulli theory. Eq. (40) can be written for bending around the y and the z310

directions as:
ζexpy,1

...

ζexpy,m

 = µ


√

2
E
Iyy

lIzz
π1,y

...√
2
E
Iyy

lIzz
πm,y

 ,

ζexpz,1

...

ζexpz,m

 = µ


√

2
E
Izz
lIyy

π1,z
...√

2
E
Izz
lIyy

πm,z

 (43)

where m is the number of considered mode shapes and E = 65.6 MPa for the

considered material. The µ value is obtained from Eq. (43) in a least-squares

sense for each direction of the beams’ bending vibrations. The identified values

of the µ material constant are shown in Fig. 4.315

The second moment of area is, in the analysed bending directions of the

beam, significantly different and so are the natural frequencies. However, as

the strain proportional damping model predicts, the material property µ is al-

most the same for both directions. These results support the assumption of

a constant material property µ as the proportionality coefficient between the320

damping ratio and the strain field in Eq. (40). The value µ for the aluminium

results was µAl = (1.87± 0.15) · 10−3 m−3/2.

The material property mean value µ required in Eq. (40) is now known for

aluminium material µAl = 1.87 · 10−3 m−3/2 and can be used to numerically325

predict damping ratios ζr of beams bending modes, independently of the cross-

section and the beam length. Moreover, once material property µAl is known,

there is no necessity for experimental data anymore. In contrast: if damping

would be modelled using the classical viscous damping approach (4), the viscous

damping coefficients α and β obtained experimentally would be different for each330
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Figure 4: Identified µ value for aluminium beams

cross-section, each length and each material.

Assuming α = 0 [11], the stiffness viscous proportionality coefficient β re-

quired to fit the experimental damping ratios is different for each aluminium

beam; their values, given in Tab. 3, are fitted to the experimental data for each

beam. µ in Tab. 3 is derived using Eq. (17), the obtained values are close to335

the identified µAl, however they are more spread. This difference is expected

since the experimental derivation of the MSE πr, used in Eq.( 43), is much more

robust than the experimental fitting of β.

Table 3: Stiffness viscous damping coefficents β and derived µ

Specimen
β

[10−8rad/s]

µ

[10−3m−1.5]
Specimen

β

[10−8rad/s]

µ

[10−3m−1.5]

1y 3.39 1.7 1z 0.68 2.2

2y 2.68 1.7 2z 0.83 2.4

3y 1.94 1.2 3z 0.65 1.6

4y 2.30 1.1 4z 0.88 1.7

5y 2.05 0.8 5z 0.66 1.0

For the samples #3 and #4 vibrating in bending around the y direction the

detailed analysis is shown in Figs. 5 and 6. The damping ratios are numerically340
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obtained with both the strain proportional damping (40) and the standard vis-

cous damping model (4), with α = 0 [11]. The estimated damping ratios using

strain proportional and viscous proportional damping are very close to each

other and reproduce quite well the experimental damping ratio ζexpr trend, ex-

cept for the first mode damping ζexp1 which is higher. This is probably due to345

the dissipation effect of the long ropes used to hang the beams. The results for

the other specimens are qualitatively the same.
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Figure 5: Damping ratio ζr trend for beam #3 bending around the y direction
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Figure 6: Damping ratio ζr trend for beam #4 bending around the y direction
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Box cross-section. In this section the strain-proportionality approach is applied

to steel beams with a box cross-section, in order to test the method on more350

complex cross-sections, see Fig. (7) and in Tab. 1.

Figure 7: Laminated steel box beam

The two beams are manufactured with different steel alloys; therefore, differ-

ent values for the material property µ are expected. Specimen #6 is produced

with steel, while specimen #7 is produced with a steel-magnesium alloy, both

are manufactured as folded and welded laminated sheets. The two beams are355

tested in both vibration planes. The parameter µ is identified using Eq. (43),

and the obtained values are shown in Fig. 8. The strain-proportional damping

parameter µ is almost the same in the two vibration planes of the same beam

and slightly different between the two beams, as expected.
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Figure 8: Identified µ value for laminated steel beams

360
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5.3. Beam with a notch

In this section the effect of a significantly changed MSE due to a notch in

the beam is analysed. Here, the MSE is obtained using a numerical simulation.

Two extruded stainless-steel beams of the same batch material, specimens #8

and #9, with the same cross-section and the same length are analysed, see Fig.365

9 and Tab. 1. The notch in the middle of the beam #9 significantly changes

the natural frequencies ωn,r, mode shapes φr and damping ratios ζr. Fig. (10)

shows a selected frequency-response function (same excitation/response pair).

Since the two beams are of the same material, the same µ values are expected,

although the modal properties are different.370

Figure 9: Twin steel beams

The estimation of the µ values is performed using Eq. (40), in the least-

squares form (43). The mode shapes of the cracked beam are numerically eval-

uated using a FE model of the cracked beam, with Euler-Bernoulli beam ele-

ments. The hypothesis of an infinity small crack is assumed for the computation

of the MSE πr of the cracked beam. Specimen #8 is tested in both directions;375

while the notched beam, specimen #9, is tested only for the y direction bending,

since the presence of the notch couples the bending and torsional modes in the

other plane. The identified µ values are shown in Fig. 11.

As expected, the identified µ values are almost the same for the three sets of

data. The damping ratio ζr of the two beams vibrating around the y bending380
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Figure 10: Twin beams FRF comparison
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Figure 11: Material property k for the steel twin beams

are compared in Fig. 12. The mean µ value is used to predict the damping

ratios of both the two beams. The results obtained are very similar to the

classic β proportional viscous damping, which however requires the fitting of β

on each system and therefore use two different β values. The damping ratios of

the notched beam are generally lower than the twin beam, this suggests a lower385

level of the global strain field in the notched beam.
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Figure 12: Experimental and predicted damping ratio for the twin steel beams: strain-

proportional damping (left), viscous damping (right).

6. Conclusion

A new approach to modal-damping-ratio estimation is proposed in this re-

search. The basic assumption is that the r-th modal damping ratio ζr can be

related to the modal strain energy (MSE) πr via the newly introduced strain390

proportional damping parameter µ. Based on this idea, no damping energy can

be generated at locations where there is no material strain (this is not the case in

most damping models, i.e., damping energy density is present in the maximum

or node of strain modes).

The proposed theoretical model is researched in detail with the Euler-Bernoulli395

beam theory and confirms to give consistent results on several experimental test

cases. Five different aluminium beam specimens with different cross-sections,

inertia values and lengths were shown to have the same material damping param-

eter µ. Further experiments were prepared on box cross-section beams made of

different materials; despite the differences in cross-section, the material damping400

parameter was shown to correctly estimate the damping ratio in perpendicu-

lar directions of the bending vibrations. The last experiment was based on

a notched vs. notch-free sample; this sample required a numerical estimation

of the MSE and additionally confirmed that damping ratios can be correctly

estimated based on the material damping parameter µ405

The modal damping ratio is, based on the viscous proportional damping
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theory, frequently estimated via the mass α and the stiffness β proportionality

parameters. Parameters α and β are structure-specific and cannot be generalised

to arbitrary shapes.

In this research the proposed material-damping parameter µ was theoret-410

ically generalised for the Euler-Bernoulli beam. It was confirmed that, based

on the material damping parameter µ, the damping ratios of arbitrary modes

and Euler-Bernoulli beam of arbitrary geometry can be theoretically predicted

correctly.
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Appendix A. Length normalisation of mode shape and force load

The mass normalised mode shape φr can be defined as the ratio between the

unitary displacement mode shape ϕr and the related modal mass mr [42]:

φr(x) =
ϕr(x)√
mr(x)

=
Ar cos

(
λr

l x
)

+Br sin
(
λr

l x
)

+ Cr cosh
(
λr

l x
)

+Dr sinh
(
λr

l x
)√

ρA
∫ l
0
ϕr(x)2dx

(A.1)

31

https://doi.org/10.1016/J.YMSSP.2011.12.012
https://www.sciencedirect.com/science/article/pii/S0888327011005280
https://www.sciencedirect.com/science/article/pii/S0888327011005280
https://www.sciencedirect.com/science/article/pii/S0888327011005280
https://www.sciencedirect.com/science/article/pii/S0888327096900849
https://www.sciencedirect.com/science/article/pii/S0888327096900849
https://www.sciencedirect.com/science/article/pii/S0888327096900849
https://doi.org/10.1006/MSSP.1996.0084
https://www.sciencedirect.com/science/article/pii/S0888327096900849
https://www.sciencedirect.com/science/article/pii/S0888327096900849
https://www.sciencedirect.com/science/article/pii/S0888327096900849
https://www.sciencedirect.com/science/article/pii/S0022460X19304900
https://www.sciencedirect.com/science/article/pii/S0022460X19304900
https://www.sciencedirect.com/science/article/pii/S0022460X19304900
https://doi.org/10.1016/J.JSV.2019.114928
https://www.sciencedirect.com/science/article/pii/S0022460X19304900
https://www.sciencedirect.com/science/article/pii/S0022460X19304900
https://www.sciencedirect.com/science/article/pii/S0022460X19304900
https://doi.org/10.1115/1.2903323


where Ar,Br,Cr and Dr depend on the beam boundary conditions, and λr is the

r-th of the characteristic equation dependent on the boundary conditions. The625

variable substitution (32) for the unitary displacement mode shape ϕr leads to

the definition of the unitary maximum displacement mode-shapes in χ domain:

ϕ̃r (χ) = Ar cos (λr χ) +Br sin (λr χ) + Cr cosh (λr χ) +Dr sinh (λr χ) (A.2)

The modal mass in χ domain can be defined as:

mr (χ) = ρA

∫ 1

0

ϕ̃r (χ)
2
l dχ (A.3)

If the (A.2) and (A.3) are replaced in the definition of unitary modal mass mode630

shape (A.1), it can be defined in χ domain as:

φr(x) =
ϕ̃r (χ)√
mr (χ)

=
ψr (χ)√

l
(A.4)

where the mode shape ψr (χ) does not depend on beam length and is defined

as:

ψr (χ) =
ϕ̃ (χ)√

ρA
∫ 1

0
ϕ̃ (χ)

2
dχ

(A.5)

Remembering the definition of the applied force (19) and performing the variable

substituting (32) it result:635

fr(x) ∝ 1

l4
∂4ϕ̃r(χ)

∂χ4
=
fr(χ)

l4
(A.6)
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